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ON THE RECURRENCE FORMULA OF THE EULER
ZETA FUNCTIONS

Joonhyung Kim*

Abstract. In this paper, we find a new recurrence formula of the
Euler zeta functions.

1. Introduction

The Euler zeta function is defined as ζE(s) =
∞∑

n=1

(−1)n−1

ns
for s ∈ C.

This function is one of the main topic in number theory and famous
function throughout all fields in mathematics as well. Historically, this
function and related results have great influence on developing mathe-
matical theories.
In this article, we consider recurrence formula of this function for even
integer s. In [2], Lee-Ryoo found the following recurrence formula of
ζE(2s) for s ∈ N using Fourier series.

Theorem 1.1. (Theorem 4 of [2]) For s ≥ 2(∈ N) and ζE(2) = π2

12 ,

ζE(2s) =
(−1)s(2π)2s

2sP2s−1
{ 1
22s+1

22s+1 − 12s2 + 3
(2s− 1)(2s + 1)

−
s−1∑

k=1

(−1)k 1
(2π)2k

ζE(2k)(2sP2k−1 −2s−2 P2k−1)}.

The proof is very elementary. They first considered a function f(x) =
x2m for −2 < x < 2 and found Fourier coefficients. Then f(x) can be
written as

f(x) =
22m

2m + 1
+

∞∑

n=1

an cos
nπx

2
,
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where an =
m∑

k=1

(−1)k+1
2mP2k−122m−2k+1 22k

n2kπ2k
cosnπ.

By substituting x = 1, they got

s∑

k=1

(−1)k
2sP2k−1

1
22kπ2k

ζE(2k) =
2s + 1− 22s

(2s + 1)(22s+1)
.

In the case of m = 1, one easily gets ζE(2) =
π2

12
. Using above equa-

tion, it is easy to get the formula in the theorem. See [2] for more
details.

The goal of this article is to get more refined version of the recurrence
formula of the Euler zeta functions.

2. Preliminaries

In this section, we briefly introduce Fourier series and Euler numbers.
For more details, see [3] and [1].
For a real valued function f(x) defined on (−p, p), a trigonometric se-

ries
a0

2
+

∞∑

k=1

(ak cos
kπx

p
+ bk sin

kπx

p
) is called the Fourier series of the

function f where a0 =
1
p

∫ p

−p
f(x)dx, an =

1
p

∫ p

−p
f(x) cos

nπx

p
dx, bn =

1
p

∫ p

−p
f(x) sin

nπx

p
dx. Then, this series converges to f at the points of

continuity.

The Euler number En is defined by
2

et + 1
=

∞∑

n=0

En
tn

n!
, for |t| < π.

Then it is known that ζE(2n) =
(−1)nπ2n(2− 4n)
2(2n− 1)!(1− 4n)

E2n−1 (See [1]).

3. The recurrence formula

The following is the main result.

Theorem 3.1. For s ≥ 2(∈ N) and ζE(2) = π2

12 ,
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ζE(2s) =
(−1)s(π)2s

2sP2s−1

{ 1
(2s− 1)(2s + 1)

−
s−1∑

k=1

(−1)k 1
π2k

ζE(2k)(2sP2k−1 −2s−2 P2k−1)
}

.

Proof. We’ll use the same function f(x) = x2m for −2 < x < 2. As
in the proof of [2],

f(x) =
22m

2m + 1
+

∞∑

n=1

an cos
nπx

2
,

where an =
m∑

k=1

(−1)k+1
2mP2k−122m−2k+1 22k

n2kπ2k
cosnπ.

Now we substitute x = 0. Then,

0 =
22m

2m + 1
+

∞∑

n=1

m∑

k=1

(−1)k+1(2mP2k−1)22m−2k+1 22k

n2kπ2k
cosnπ

=
22m

2m + 1
+

∞∑

n=1

m∑

k=1

(−1)k+1(2mP2k−1)22m+1 (−1)n

n2kπ2k

=
22m

2m + 1
+

m∑

k=1

(−1)k(2mP2k−1)22m+1 1
π2k

ζE(2k).

Therefore
s∑

k=1

(−1)k
2sP2k−1

1
π2k

ζE(2k) = − 1
2(2s + 1)

and hence we also

get
s−1∑

k=1

(−1)k
2s−2P2k−1

1
π2k

ζE(2k) = − 1
2(2s− 1)

. By subtracting the sec-

ond equation from the first equation, we get the result.

Corollary 3.2. For s ≥ 2(∈ N) and ζE(2) = π2

12 ,

ζE(2s) =
(−1)sπ2s

2s− 1
{ 1
(2s + 1)!

− 1
s

s−1∑

k=1

(−1)k 1
π2k

ζE(2k)
(2k − 1)(2s− k)
(2s− 2k + 1)!

}.

Proof. Since 2sP2s−1 = (2s)! and

2sP2k−1 −2s−2 P2k−1 =
2(2s− 2)!(2k − 1)(2s− k)

(2s− 2k + 1)!
, the corollary imme-

diately follows.
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As an application, we also get the following result as well.

Corollary 3.3. For s ≥ 2(∈ N) and ζE(2) = π2

12 ,

ζE(2s) =
(−1)sπ2s

2s− 1
{ 1
(2s + 1)!

− 1
s

s−1∑

k=1

(2s− k)(2− 4k)
2(2k − 2)!(1− 4k)(2s− 2k + 1)!

E2k−1}.

Proof. The proof is direct by substituting

ζE(2n) =
(−1)nπ2n(2− 4n)
2(2n− 1)!(1− 4n)

E2n−1 in the above corollary.

Remark 3.4. One can get many such recurrence formulas by con-
sidering the Fourier series of various functions. Even with the same
function as in this paper, one can also get many forms of formulas by
substituting other values into its Fourier series.
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